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Motivation

= Machine learning (ML) models often encounter data from
domains unseen during training time.

= Performance of ML models suffers when faced with data
from unseen domains.

= This makes the performance on in-distribution data is a
poor indicator of their performance on unseen domains.

= Thus, metrics that can gauge the performance of ML
models at test-time (a.k.a. transferability) without access
to labels are essential.
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‘ Motivation

= Such transferability estimation metrics can be useful for various practical applications.
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Background on Optimal Transport

Suppose every day you have move bread from M bakeries to N cafes
o Bakery distribution: P = ¥, p;6;

0 Cafe distribution: Q = XL, q;6';

0 ¢y (base) distance of the i*" bakery to j™ cafe

o my: amount of bread to be moved from i™ bakery to j™ cafe

0 Eglej] = Xi;mycy is the total cost
Earth Movers Distance is defined as inf E|c;|.
T

More generally, for two distributions (discrete/continuous) defined on

a metric space OT(P, Q) := ne}lr(lng) E (e, xp)enlc(x1, x2)].

https://pythonot.github.io/auto_examples/plot_Intro_OT.html
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Test-time Estimation of Transferability via OT

Transferability of a model trained on the source domain S to an unseen target domain T is
defined as the model’'s accuracy on T i.e,

Eeyeprey) accuracy(h(g(x), )]
where g: X — Z is the encoder and h: Z — Y is the classifier.

The base distance ¢ between two points is defined as

C((xS: Vs), (xT, yT)) = cfeatures(xSr xr) + 4 Clabets Vs, Yr)-

We measure transferability of a model to T at test time using

TETOT := OT.(Ps,Pr) = i (1},2 Py Ex[c((xs,¥5), (X7, V7))]



Algorithm to compute TETOT

We use labeled samples from S and unlabeled samples from T. i NGl oS el e

Randomly sample m samples, (xsi, y§) ~ Dg

Randomly sample n samples, (x{w) ~ Dr

# Compute pairwise cost.
forl—l .,mandj=1,..,ndo

We define the feature cost as Cfeatures *= g (xs) — g(xr)ll2 Cfeatures lg(x5) - g(xr)”
where g(:) denotes the features extracted from the encoder. Clavers = |5 = RGg (<2 )

€ *= Cfeatures T A - Clabels

TETOT := mingenpgp,) Z Ty . cl
—

We define the label cost as cjpeis == llys — R(gler))ll2 S-f-Xﬂij:%Vi'zﬂij=%Vj
where h(g(-)) denotes the pseudo-labels from the model. : ‘



Empirical results

We present evaluations on PACS and VLCS datasets and their variations in single and
multiple source domain settings.

We show the correlation of TETOT with transferability on
o Best architecture selection for a given target task.

o Best source selection for a given target task.

o Estimating accuracy of unseen domains.

We compare the correlation of TETOT with transferability with the popular entropy-based
metric dependent only on the target domain data.



‘ TETOT for model selection

= Given a target task, identify the best model architecture to use.
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Best source selection for a given target task

Given a target task, select the model trained on the best source domain.

We use the ResNet-50 model architecture trained in both single/multiple domain setting.

Dataset | Entropy TETOT

PACS -0.47 -0.94
VLCS -0.58 -0.92

Average | -0.33 -0.93




‘ Estimating transferability of unseen domains
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Advantages of TETOT

= TETOT can be computed

o Using a few samples from the two domains.
o Using only the statistics from the two domains.

= Results on the architecture selection problem.
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Conclusion

Estimating transferability at test time without access to labels of the target data is essential
for various practical applications.

We focused on proposing an efficiently computable metric (TETOT) to gauge transferability
based on Optimal Transport distance between the source and the target domains.

TETOT outperforms entropy and achieves a better correlation with transferability on the
problems of model selection and predicting performance on unseen domains.




