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Motivation Poisoning in unsupervised domain adaptation setting Key Results
» Performance of machine learning models degrade significantly under distribution > Poisoning using mislabeled data: » Poisoning using mislabeled data:
shifts i.e., when Psgypce (X, y) # P target(x: ). Poisoning with mislabeled target domain 100 mClean m Poison_source ® Poison_target
data fools UDA methods into aligning g 80
» A domain invariant representation that minimizes error on the source domain wrong classes from the two domains. § 60
may fail to reduce the error on the target domain. g 4
» Previous works have explained this failure for scenarios such as shifts in the marginal » Poisoning using watermarked data: g o WL NRD RL_ BN WRRR_NEWR RN MR BR RHix N BN ORD 0N
label distributions or have empirically demonstrated these representations to increase Watermarked data looks like the data from DANNS\(;:ﬁTo II:/I/IEIDST o DAI::INTSDQI: MI\/IlI(I:;)T_I\?ISL DANNJ&?—? uIaVI Lj:S[;S o DANNUC;[;?:) Il\/l/ll\(I:I[S).T o
the error of the 1deal joint hypothesis. Domain adaptation tasks

the source domain but successfully fools

) ) UDA methods 1nto aligning wrong classes
Contributions from the two domains.

» To provably explain the failure of learning in the unsupervised domain
adaptation (UDA) setting we propose a lower bound on the target domain error.

» Poisoning using watermarked data
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» Poisoning using clean label data:

» Through simple examples we illustrate the success of state-of-the-art UDA Clean label poison data are hardest to detect
methods to be dependent on the data distributions of the two domains. and can cause a target domain test point to

be misclassified after domain adaptation.
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» We propose mislabeled, watermarked and clean-label data poisoning attacks to | SR T omain adaptation tasks M
gauge the robustness of UDA methods at aligning the two domains. . .
t-SNE plots of the representation learned with UDA methods > Poisoning using clean label data ( vs s on MNIST to MNIST M task)
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Necessary condition for learning in the UDA setting e R o
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Notations:

e X denotes the data domain and D denotes a distribution on this domain.

 f:X — [0,1] is a deterministic labeling function, g: X — Z is a map from data to the representation space
and h: Z — [0,1] is a hypothesis in the representation space.

* P(2) is the density function of the distribution induced by g on Z and f(z) == Ep[f(x)|g(x) = z] be the
induced labeling function.
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With mislabeled
target domain data

e e(h) = IEZ~5[| f(z) — h(Z)” is the misclassification error w.r.t. the induced labeling function and
D,(p,p") = |, 19(2) — p'(2)| dz be the total variation distance.
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Theorem: (Lower bound on the target domain error in the UDA setting)
Let H be the hypothesis class and G be the class of representation maps.
ThenV heH and g € ¢,

With mislabeled
watermarked data

Ctarget (h) = max{etarget (fsource: ftarget)r €source (fsource» ftarget)}
— (esource(h) + Dy (ﬁsource: ﬁtarget))-
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