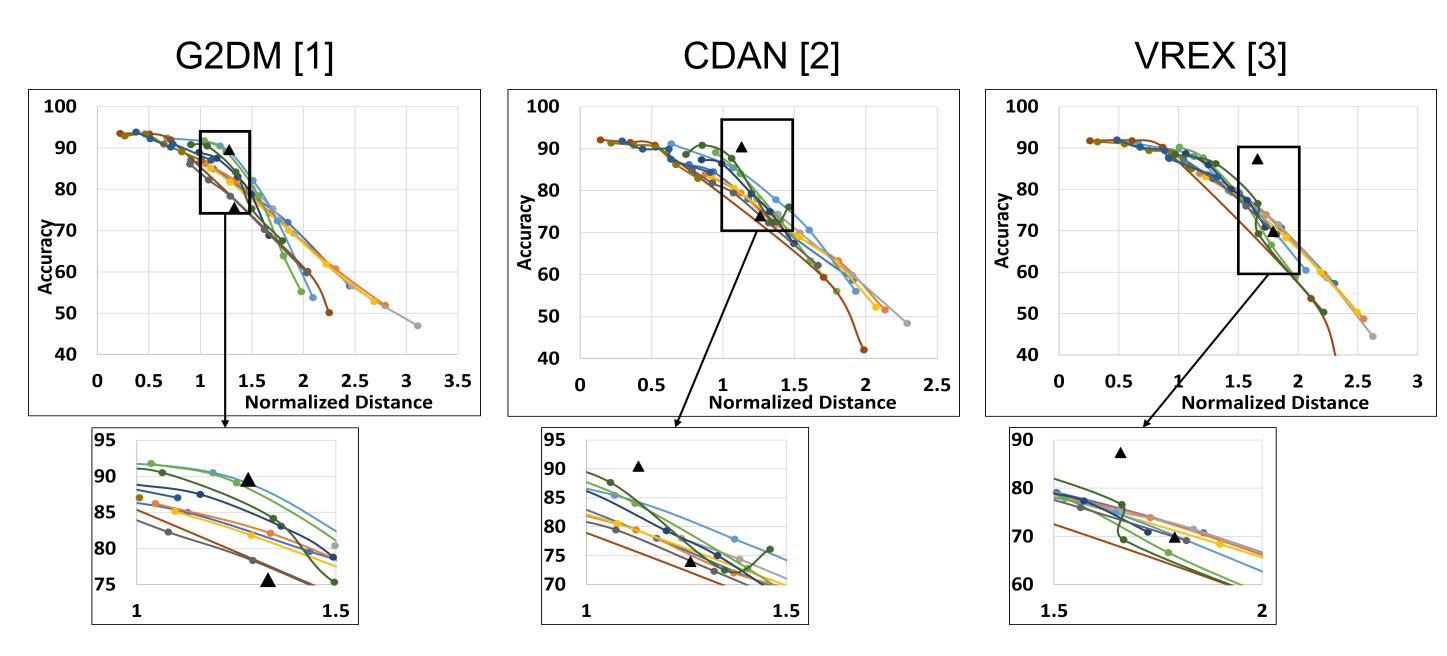


Motivation

- Domain Generalization (DG) focuses on developing models that generalize well to data from domains unseen during training.
- Following works that explain the generalization performance using distributional distance, learning a representation space that reduces distance between domains is shown to be effective at DG.
- □ However, evaluating DG models only using benchmark datasets is insufficient to gauge their performance on unseen domains.



Contributions

- □ We propose a data independent and a distance-based evaluation method for DG based on distributionally robust optimization.
- Our method *efficiently* estimates the loss of the worst-case distribution to better gauge the generalization performance of DG models. It can be easily incorporated into training of DG models to produce models that generalize better on unseen domains.

Do Domain Generalization Methods Generalize Well?

Akshay Mehra¹, Bhavya Kailkhura², Pin-Yu Chen³ and Jihun Hamm¹ ¹Tulane University, ²Lawrence Livermore National Laboratory, ³IBM Research

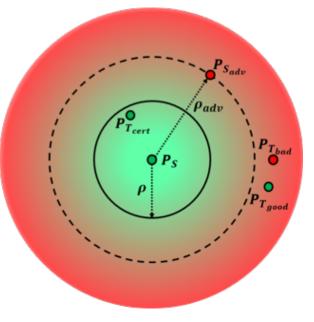
Distance-based evaluation method for DG

- \Box Notation: \mathcal{X} , \mathcal{Y} denotes the data domain and the labels, $g: \mathcal{X} \to \mathcal{Z}$ denotes the representation map and $h: \mathbb{Z} \to \mathbb{Y}$ denotes the classifier on top of Z.
- Our distance-based measure of the performance of DG model relies on the worst-case loss of the model at a particular distance $\sup_{\mathcal{P}:\mathcal{W}_2(\mathcal{P},\mathcal{Q})\leq\rho} \mathbb{E}_{(x,y)\sim\mathcal{P}}[\ell(h(g(x)),y)].$ This is an infinitedimensional problem over a convex set and is difficult to solve.
- □ However, its optimal value can be computed using the dual problem. Moreover, since DG methods learn a representation space where unseen domains lie close to the source domain, we solve the following to compute the worst-case loss

$$\sup_{\substack{\mathcal{P}: \mathcal{W}_{2}(\mathcal{P}, g \# Q) \leq \rho \\ \gamma \geq 0}} \mathbb{E}_{(z,y) \sim \mathcal{P}}}$$
$$= \inf_{\gamma \geq 0} \left\{ \gamma \rho^{2} + \mathbb{E}_{(z_{0}, y_{0}) \sim g \# Q} \left[\sup_{z \in \mathcal{Z}} \{\ell(P_{z}) \} \right] \right\}$$

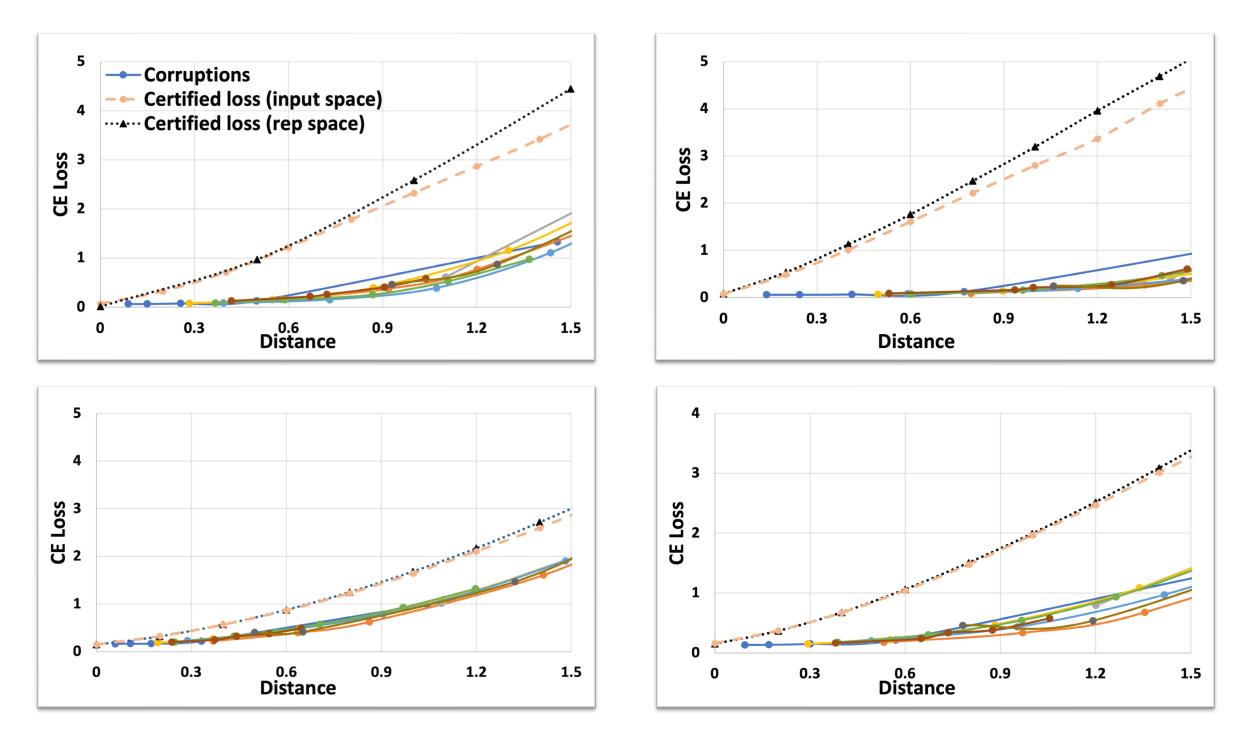
- space of probability distributions with **The** Wasserstein distance as a metric. \mathcal{P}_{S} and \mathcal{P}_{T} are the sources and the unseen target distributions. The worst-case loss can be efficiently computed for any distance ρ by solving the above problem.
- □ The objective of minimizing the worst-case loss of a DG model at any distance in the representation space can be combined with losses of other DG methods to yield models that generalize better on unseen domains.

 $\left[\ell(h(z), y)\right]$ $h(z), y) - \gamma ||z_0 - z||_2^2 \}]$.

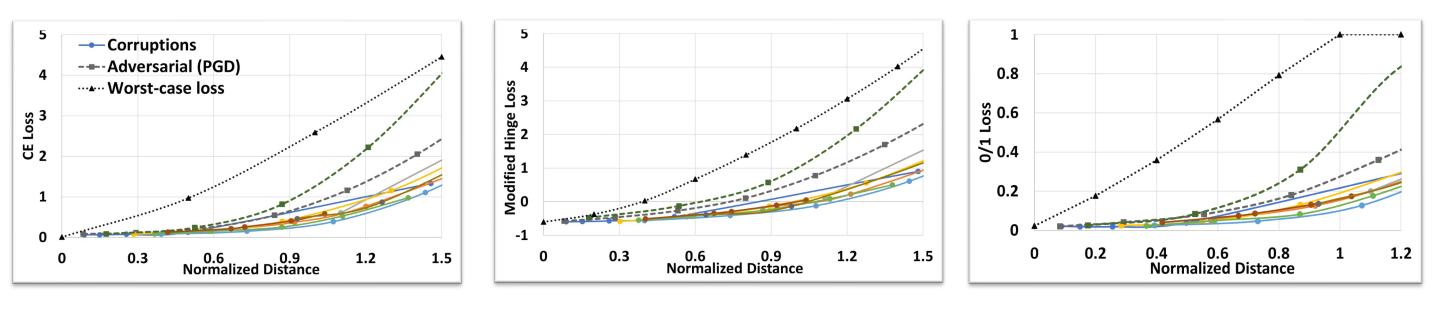


Key results

- □ Models trained with WM & G2DM on R-MNIST.



• Effectiveness of using different loss functions (cross entropy, hinge and misclassification) for computing the worst-case loss. Models trained with WM on R-MNIST dataset and are evaluated using WC-DG.



References

- Long et. al (2018), Conditional adversarial domain adaptation.

□ High worst-case loss even close to the source domains highlights the poor generalizability of current DG models.

• Worst-case loss in the representation space is not an overestimation of the worst-case loss in the input space.

Albuquerque et. al (2019), Generalizing to unseen domains via distribution matching.

Krueger et. al (2021), Out-of-distribution generalization via risk extrapolation (rex).

Sinha et. al (2017) Certifying some distributional robustness with principled adversarial training

Volpi et al (2018) Generalizing to unseen domains via adversarial data augmentation.