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Motivation

Contributions

➢ We study the problem of using data poisoning attacks to affect the robustness

guarantees of classifiers trained using certified defense methods.

➢ We propose a bilevel optimization based clean label poisoning attack to

generate poison data against robust training and certification methods.

➢ We demonstrate the effectiveness of our attack at reducing certified

adversarial robustness obtained using randomized smoothing on models

trained with state-of-the-art certified defenses.

Poison data that hurts certified adversarial robustness

Presence of imperceptibly distorted poison data can significantly hurt certified 

adversarial robustness guarantees.

Poisoning Against Certified Defenses (PACD)

Generate poison data (u ) such that when the victim trains a model (with

parameters θ) on the poisoned data (𝒟clean ∪ 𝒟poison) the certified robustness

guarantees of the target class are significantly diminished on a validation set 𝒟𝑣𝑎𝑙.

min
𝑢∈𝒰

ℛ(𝒟𝑣𝑎𝑙; 𝜃∗)

𝑠. 𝑡. 𝜃∗ = argmin
𝜃

ℒ𝑟𝑜𝑏𝑢𝑠𝑡 (𝒟
𝑐𝑙𝑒𝑎𝑛 ∪ 𝒟𝑝𝑜𝑖𝑠𝑜𝑛; 𝜃)

Lower-level problem trains a model using training procedures that lead to models

with high certified robustness such as MACER, SmoothAdv etc.

Upper-level problem lowers average certified radius obtained from a certification

procedure such as Randomized Smoothing

Effect of poisoning on the decision boundary

Average margin of the smoothed classifiers on the target data is reduced leading to

bad certified robustness guarantees.

Key Results

➢ Reduction in Average Certified Radius with poisoning 

➢ Transferability of poison data to other methods and models

➢ Failure of weight regularization-based defense
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➢ Recent works have shown failure of models trained

with ERM in achieving high certified robustness

and have proposed new training methods.

➢ However, the role of the data distribution in

achieving these high certified robustness guarantees

has been ignored.

➢ Studying performance in adversarial setting such as

in presence of data poisoning can be beneficial. But

current poisoning attacks fail when certified

defenses are used.

Poisons optimized against ERM fail 

when certified defenses are used.


